CS 4124 Homework Assignment 1
2025-03-07 15:55:39

Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: YSYY66

CS 4124

Homework Assignment 1

Given : January 19, 2023

Due : February 3, 2023

General directions . The point value of each problem is shown in [ ]. Each solution must include all details and an explanation of why the given solution is correct. In particular , write complete sentences . A correct answer without an explanation is worth no credit . The completed assignment must be submitted on Canvas as a PDF by 5:00 PM on February 3, 2023. No late homework will be accepted .

Digital preparation of your solutions is mandatory . This includes digital prepa - ration of any drawings ; see syllabus concerning neat drawings included in L A TEX solutions . Use of L A TEX is required . Also , please include your name .

Use of L A TEX ( required ).

● Retrieve this LATEX source le, named homework1 .tex, from the course web site.

● Rename the le < Your  VT PID>_solvehw1 .tex, For example, for the instructor, the file name would be heath_solvehw1 .tex.

● Use a text editor (such as vi, emacs, or pico) to accomplish the next three steps. Alternately, use Overleaf as your LATEX platform.

● Uncomment the line

%  setboolean{solutions}{True}

in the document preamble by deleting the %.

● Find the line

enewcommand{author}{Lenwood  S .  Heath}

and replace the instructor’s name with your name.

● Enter your solutions where you nd the LATEX comments %  PUT  YOUR  SOLUTION  HERE

● Generate a PDF and turn it in on Canvas by 5:00 PM on February 3, 2023.

[ 20] 1. Textbook Problem 5 in B .1 on Page 520.

Prove Lemma A .4: For all alphabets Σ and all languages L ⊆ Σ , the equiv - alence relation ≡L is right - invariant .

The lemma and the de nition of the equivalence relation are on Page 505.

[20] 2. Textbook Problem 3( c ) in B .2 on Page 522 .

Design an FA M , with alphabet Σ = {0, 1} , that recognizes ( c ) the set of all strings that contain the string 011 , in that order , but not necessarily consecu - tively .

Be certain you understand the set ( language ) of M before you start design - ing . Constructing some examples of strings both in L(M) and not in L(M) can be helpful .

You may use an algebraic speci cation or a transition diagram ( labeled di - rected graph ) speci cation to present your design for M . Be certain to explain why your design works .

[ 20] 3. Consider the OA M4 in Figure 3.4 on Page 60. Give a complete and

careful algebraic speci cation

M4     =   (Q, Σ, δ, q0 , F)

for M4 .

[ 20] 4. Textbook Problem 7( c ) in B .2 on Pages 522 and 523.

Use a ( fooling set )- plus - ( Continuation Lemma ) argument to prove that the following language is not Regular :

L5     =   {aibjck  | i = j oR j = k}.

Your argument will be a proof by contradiction .

The Continuation Lemma is Lemma 3.2 on Page 57, while the fooling set kind of argument is rst utilized on Pages 76 and 77.


Budget:
Negotiable
Comment List: 0
No Data